DEPARTMENT OF MARINE LIVING RESOURCES

Revised Syllabus

With effect from 2022-2023

ANDHRA UNIVERSITY Visakhapatnam

DEPARTMENT OF MARINE LIVING RESOURCES, ANDHRA UNIVERSITY Scheme of Examination (With effect from 2022-2023admitted batches) M.Sc. Marine Biology and Fisheries-I Semester

Paper	Paper Title	Maximum Marks		Credits			
INO		Theory (End	Practical	Total	Theory	Practical	Total
		exam +	(Semester	marks			
		Mid+Asgnmt)	end)				
1.1	Physical and Chemical Oceanography	70+20+10	50	150	4	2	6
1.2	Biological Oceanography	70+20+10	50	150	4	2	6
1.3	Marine Ecology	70+20+10	50	150	4	2	6
1.4	Biostatistics	70+20+10	50	150	4	2	6
	Total marks	400	200	600	16	8	24
	M.Sc. M	arine Biology a	nd Fisheries-I	I Semester	1	-	-
		Theory (End	Practical	Total	Theory	Practical	Total
		exam +	(Semester	marks			
0.1		M1d+Asgnmt)	end)	150	4		
2.1	Estuaries and Coastal Zone Management	70+20+10	50	150	4	2	6
2.2	Biology of Marine Organisms	70+20+10	50	150	4	2	6
2.3	Fish Physiology	70+20+10	50	150	4	2	6
2.4	Fishery Science	70+20+10	50	150	4	2	6
	Total marks	400	200	600	16	8	24
	M.Sc. Ma	arine Biology a	nd Fisheries-I	II Semester	1	-	-
		Theory (End	Practical	Total	Theory	Practical	Total
		exam +	(Semester	marks			
0.1		$M_{1d}+A_{sgnmt}$	end)	150	4		-
3.1	Fishing Technology and Fishery Management	70+20+10	50	150	4	2	6
3.2	Aquaculture	70+20+10	50	150	4	2	6
3.3	Fish Nutrition and Feed Technology	70+20+10	50	150	4	2	6
3.4	Marine Pollution & Bio- deterioration	70+20+10	50	150	4	2	6
3.5	MOOC-I						2
	IPR (Value added course)						
	Total marks	400	200	600	16	8	26
	M.Sc. M	arine Biology a	nd Fisheries-I	VSemester			
		Theory (End	Practical	Total	Theory	Practical	Total
		exam +	(Semester	marks			
		Mid+Asgnmt)	end)				
4.1	Fish Processing Technology	70+20+10	50	150	4	2	6
4.2	Fishery Economics and Extension	70+20+10	50	150	4	2	6
4.3	Aquaculture Biotechnology	70+20+10	50	150	4	2	6
4.4	MOOC-II						2
4.5	Project	100		100	4	-	4
	Viva-voce		50	50		2	2
	Research Methodology (VAC)						
	Total marks	400	200	600	16	8	26

M. Sc., Marine Biology and Fisheries

Course Objectives:

To impart knowledge in various aspects of marine ecosystems and marine fisheries such as physical and chemical parameters, marine ecology, biology of marine organisms, biological oceanography, fisheries science and management, fish processing and preservation, coastal marine pollution, bio-deterioration, culture of marine organisms, application of biotechnology to aquaculture for best culture production of food species.

To produce skilled, technical manpower to serve the fisheries sector, aquaculture sector, marine fisheries and aquaculture research institutes and to the colleges to teach marine biology and fisheries courses

To equip the student with the knowledge and technical strength to undertake entrepreneurship in both capture and culture fisheries, to start NGOs to protect the coastal ocean against release of pollutants, to protect endangered marine organisms, coral reef and mangrove ecosystems.

M.Sc. Marine Biology and Fisheries

First Semester

Paper 1.1: Physical and Chemical Oceanography

Learning Objectives:

To impart knowledge on the various aspects such as temperature, light, salinity, waves, tides, heat distribution between continent and oceans.

To impart knowledge on the micronutrient distribution, regeneration of nutrients, dissolved oxygen, carbon dioxide and other important gases, calcium carbonate precipitation and its biological importance, sea- surface micro-layer its importance in the productivity of oceans.

To give knowledge to the students about the various national and international marine research Institutions

Outcome:

The student will get sound knowledge on the above aspect which helps the student understand importance of the physical and chemical properties seawater, the role of the oceans in keeping the continental climate cool.

The student will get knowledge on the role played by the various properties of seawater on the sustainability of organisms and on the overall productivity of oceans.

The student will be aware of the various marine research institutions in India and abroad to prepare himself to seek a position in the institute or to pursue higher studies.

Unit -I

Dimensions of Oceans, Physical parameters of sea: Temperature, light, waves, currents, upwelling &sinking, density & pressures, tides, sound and its propagation in the sea. Upwelling and Sinking, Heat budget of oceans. Global circulation patterns. Thesea asasuitablephysical, chemical and biological environment.

Unit - II

Constancy of composition of sea water- salinity, chlorinity, definition and significance. Conservativebehaviour of major elements, interaction of trace elements with marine organisms, factors affectingthe distribution ftraceelements in thesea. Dissolved gases in sea water- basic concepts: Solubility of gases in sea water, air-sea gas exchange, processes affecting the irdistribution.

Unit-III

Dissolvedoxygenintheoceans:Distribution&factorsaffectingitsdistribution Carbon dioxide system: Co2 equilibrium in the sea water, pH, alkalinity & buffering capacity of seawater, Calcium carbonate precipitation & dissolution phenomenon - its biological importance.

Unit - IV

Micro nutrient elements: N, P, Si in sea water - their forms in sea water, distribution & cycles. N:Pratios,uptake®enerationofnutrientelements.

Chemistry of sea surface micro-layer - origin, thickness and collection of surface material, properties of these as urface micro-layer.

Unit - V

NationalandInternationalInstitutesofmarineresearch.

NIO, CMFRI, CIFE, CIFT, CIBA, MPEDA, INCOIS, NRSA., their affiliation, thrust areas of research, administration hierarchy, scientist recruitment.

Scripp's Institute of oceanography, Woods Hole Institute of Oceanography, Rosential School of Marine Sciences, Hawaiian Institute of Marine Biology, National Oceanography and atmospheric administration, Plymouth Laboratories.

References:		
Riley, JP and Chester R	Introduction to marine chemistry	Academic Press
Riley JP and Skirrow, G	Chemical Oceanography	Academic Press
	(Vol.1,2,3 &8)	
R.A.Wiley	Sea water: Its composition,	The open University
	properties & behaviour	
Broecker and Peng,	Traces in the Sea	
	Lamont-Dohery	
	Geological Observatory, NY	
M.E.Q. Pilson	An introduction to the	Cambridge Uni. Press
	chemistry of the Sea	-
Burton <i>et al.</i> ,	Dynamic processes in	
	the chemistry of the upper ocean	Plenum Press
D. Satyanarayana	Introduction to marine chemistry	·.

Practicals:

1. Determination of salinity by Harvey's and Kneudson's method

2. Determination of Dissolved Oxygen by titrimetric method

3. Determination of pH by pH meter method

4. Determination of alkalinity by titrimetric method

5. Calculation of tide time and tide height

6. Calculation of density of sea water using salinity and temperature data

7. Identifying the resulting phenomenon (Upwelling/sinking) by observing the vertical temperature crosssection data of a given layer of water column

8. Identification of water mass, determination of stability of water column using temperature and salinity data

9. Equipment : Nansens' water bottle, Niskin's water bottle, Secchi disc, Refractosalinometer, Reversing thermometer

Paper 1.2: Biological Oceanography

Learning Objectives:

To study the Distribution of plankton in the marine environments. To study the methods of collection of plankton. To understand marine food chains. To study the Factors affecting production.

Outcome:

To gain knowledge on identification of various phytoplankton and zooplankton. Various methods to estimate organic matter and chlorophyll in sea water. To gain knowledge on collection methods of plankton.

Unit-1

Introduction to plankton: General classification and composition of plankton. Floating mechanismn in plankton.Collection of plankton:

Unit- II

General account of instruments and nets employed. Methodsoffixationandpreservation; Analyses and enumeration of samples. Standing crop estimation methods.

Unit- III

Plankton in relation to fisheries: General account. Distribution of plankton in space and time,Horizontaldistribution:nereticandoceanicplankton;geographicaldistributionindicatorspecies.Verticaldistribution:Verticalmigrations,SeasonalchangesPhytoplankton and Zooplankton relationships.changesinplankton

Unit- IV

Primary and Secondary (zooplankton) production: General account of productivity in different oceans.

Factorsaffectingprimaryand secondary production:Nutrients,light,temperature, organic micronutrients, inhibitors and grazing. Particulate and dissolved organic matter in these a.

Unit- V

Red tides and Mass-mortality in the seas. Generalsurveyofmarinefoodchains: Pelagicfoodchains. Pelagicfoodpyramidandfactorsaffectingitsproduction&stability.

References:

Angel MV	Biological Oceanography	Methuen
Friedrich H	Marine ecology	S & J
Raymont JEG	Plankton & Productivity	Pergamon
Ekman S	Zoogeography of the sea	S & J
Parsons et al	Biological Oceanographic	Pergamon

- 1. Identification of Phytoplankton: Diatoms, Flagellates, Dinoflagellates, Coccolithophores and Toxic dinoflagellates
- 2. Identification of Zooplankton: Holoplankton, Neroplankton, Coastal and Oceanic plankton
- 3. Analysis and enumeration of Phytoplankton and Zooplankton: Biomass and standing crop estimation
- 4. Estimation of particulate organic matter in sea water
- 5. Chlorophyll estimation
- 6. Plankton nets

Paper 1.3: Marine Ecology

Learning Objectives:

To impart knowledge to the students on the various ecological divisions and habitats of the marine environment. Effects of environmental parameters on the intertidal organisms- rocky shores, rock pool environment, sandy shores and sandy shores. Zonation in the intertidal regions. The Indo-west pacific region-characteristic features and its biodiversity. Characteristic features of coral reefs, mangroves and their importance in supporting biodiversity and protecting coastal zones.

Outcome:

The student will get sound knowledge about the various ecological zones, environmental conditions and the types of organisms/ fisheries of those zones for exploitation.

The student will get good understanding about the role played by marine algae in supporting the phytal fauna there by enriching the benthic and pelagic food chains.

Unit -I

Classification of marine environment. General characters of the primary biotic division s.

Distribution of shallow waterbenthic organisms; Fauna of deep seaandhadal regions-theiradaptations.

Unit - II

IntertidalEnvironment: Physico-chemical parameters in the intertidal region: Insolation, desiccation. Types of rocky shores, Rock pool Environment, distributionoflifeon rockyshore, sandyshoreand muddyshore, zonationand adaptations oforganisms of rocky shore, sandy shore and muddy shore.

Unit - III

ZoogeographyofseaswithspecialreferencetoIndo-westPacific region. Ecologyofcoralreefsandmangrovehabitats; theirspecial features. Foodchains of coral reef and mangrove ecosystems.

Unit - IV

distribution.

LarvalEcology:Typesoflarvaeandtheir Chemical communications and settlement of larvae of marine benthic organisms. Ecologicalimportanceandconservationofmarinealgae.Ecologicalmodelling.

Unit - V

Macro, micro and benthic fauna and their ecology, Benthic and autotrophic production, chemical composition of sediments, aerobic and anaerobic environments, animal -sediment relations.

References:

Svedrup *et al* Tait RV **Riley & Skirrow**

The Oceans Elements of marine ecology Chemical Oceanography

Prentice Hall **Butterworths** Academic Press

Newell RC	Biology of intertidal animals Log	gos Press
Kinne O (Ed)	Marine ecology	John Wiley & Sons
Marshall NB	Aspects of Deepsea Biology	Hutchinson
Ekman S	Zoogeography of the sea.	Sidgwick & Jackson

- 1. Representative organisms of rocky shore, sandy shore and muddy shore with special reference to their ecological features, adaptations, economic importance.
- 2. Larvae of marine benthic organisms.
- 3. Ecological modelling of ecosystems
- 4. Analysis of sediment composition analysis
- 5. Field visit to rocky, sandy and muddy shores.
- 6. Computational species diversity indices using the data collected from rocky shore/zooplankton sample
- 7. Instruments: Cores, Grab sampler, dredge.

Paper 1.4:Biostatistics

Learning Objectives: To impart knowledge on basics of biostatistics and applications of statistics in Marine Biology and Fisheries.

Outcome: Student can understand the basic concepts of sample, sampling methods, Collection and classification of data, Representation of biological data both diagrammatic and graphical, measures of central tendency & dispersion, Correlation and regression, Testing of hypothesis and computer applications.

UNIT -I

Introductiontostatistics, Samplingandsamplingdesign, Collection of primary and secondarydata, Classification and tabulation of data.

UNIT -II

Diagrammatic(onedimensional&twodimensional)representationofdata. Graphicalrepresentation(Histogram,frequencypolygon,frequencycurve,and ogive curve) of data, Measures of central tendency (Mean, median and mode).

UNIT -III

Measuresofdispersion:standarddeviation,standarderror,variance, Skewness, kurtosis and moments. Correlation and regression analyses, Probability and distributions.

UNIT-IV

Estimationandtestingofhypotheses;Testsofsignificance:Ztest,ttest, F test, Chi-square test, ANOVA (one way and two way), ANCOVA, multi-variateanalyses. Types of errors &levels of significance.

UNIT -V

Computer applications: Analyses of data using Microsoft Excel in stock assessment, use of virtual population analysis and pedigree analysis and predictive models. Applications of statistics in marine biology and fisheries: data collection analyses.

References:

Arora & Malhan	Biostatistics	Himalaya
Ramakrishnan	Biostatistics	Saras
Gupta SC	Statistical methods	Sultan chand
Sokal & Rohlf	Biometry	Freeman
Jorgenson SE	Fundamentals of ecological modelling	Elsevier

Practicals:

Problems on

1) Classification of data.

2) Diagrammatic representation & Graphical representation of data.

3) Measures of central tendency.

4) Measures of dispersion.

5) Correlation analysis.

6) Probability and distribution.

7) Estimation and confidence limits.

8) Parametric tests - Z, P, and F

9) Analysis of variance.

10) Chi-square test.

11) Case study on Marine Biological data

12) Analysis of secondary data- MS Excel.

M.Sc. Marine Biology and Fisheries Second Semester

Paper2.1:Estuaries and Coastal Zone Management

Learning Objectives:

To impart knowledge to the students about different types of estuaries in India and abroad. The physicochemical properties of estuaries, To make the student equip with the knowledge of coastal zone regulations and CZRs with reference to aquaculture, management of estuaries and coastal zones, applying remote sensing methods.

To give knowledge to the student in topics of wild life protection act, marineprotected areas, sanctuaries and biosphere reserve national marine park.

To give students knowledge in the advanced topics such as geographic informationsystemanditsapplications in coastal zone management, International law of the seas, international negotiations

andsettlements over open seas, conflictmanagement, sharingstocks.

Outcome:

The student will get sound knowledge on the ecology, biodiversity and the importance of estuaries and mangroves of Indian coastal zones, on the coastal zone regulations, IUCN criteria for listing the organisms in the red list, wild-life protection act, MPAs, sanctuaries and biospheres, their role in conserving wild-life, *in-situ* and *ex-situ* conservation methods, on the advanced topics such as GIS, remote sensing, application of those advanced topics in the management of estuaries, mangroves and coastal zones. The student may be encouraged to initiate NGOs to protect marine and wild-life.

Unit – I

Classification of estuaries: Types of estuaries

Estuarine environment: Physico-chemical properties of estuaries

Salinity stratification in estuaries

Unit – II

Distributionofestuarineplankton, nektonandbenthos – their adaptations to estuarine life. Estuarineplants:

Distributionofmangroves. Estuarinebirdsand estuarinefoodweb.

Unit- III

Coastal Zone Management: Coastal resources: finfish, shellfish, non-living Resources and theirmanagement.

CoastalZoneRegulationsinthecontextofaquaculture, suitability, ICZM and estuarine management. Remotes ensing applications in coastal zonemanagement.

Unit - IV

IUCN criteria- Red list, wild life protection act, international treaties and conventions. Marineprotected areas, Sanctuaries and biosphere reserves, Establishment of National Marine parks.Insituandexsitu conservation.

Unit - V

ElementsofGeographic InformationSystemanditsapplicationsinaquaculture.

Law of the Seas. International law of the seas, Historical perspectives, International negotiationsandsettlements over open seas, conflictmanagement, sharingstocks.

References:

Mc Lusky DS	Ecology of estuaries	Hinmann
Green J	Biology of estuarine animals	S & J
Carter RWG	Coastal environments	Academic Press
Kinne O	Marine Ecology	John Wiley
D.K.Pandey,	Fisheries governance & Legislation	NPH
H.K.De	In India	

- 1. Determination of sediment organic matter
- 2. Grain size analysis of estuarine sediment using ro-tap sieve shaker
- 3. Species diversity and ecological modelling of mangrove and estuarine organisms
- 4. Separation of total suspended matter and plotting with respect to location and tide
- 5. Typical estuarine and mangrove organisms.

Paper2.2: Biology of Marine Organisms

Learning Objectives:

To provide knowledge to the student about various biological activities of marine organisms such as feeding, respiration, reproduction, reproductive cycles, excretion, circulation, osmoregulation, bioluminescence, pigments, endogenous rhythms.

Outcome:

The student will get a thorough knowledge on the feeding organs, feeding types, digestion, respiratory organs, reproductive organs, types of reproduction, spawning seasons, GSI, gonad recovery, hermaphroditism, protandry, protogyny, semelparity, iteroparity, factors effecting respiration, reproduction.

The student will be having knowledge to undertake a study on the biology of an individual fish/ shellfish of commercial importance in order increase its production through capture or culture.

Unit -1

Marineanimal associations: Commensalism, mutualism, Symbiosis, Parasitism and Predator – preyrelationships.

Nutrition:Typesoffood,generalmechanismsoffeeding,digestionanddigestiveen zymes.Excretion:Modeofnitrogenexcretionandeliminationofnitrogenouswaste s.

Unit - II

Respiration:Respiratorymechanisms;factorsaffectingrespiration(Salinity,temp eratureandoxygentension);Respiratorypigments andtheirrole intransportofgases.

Osmoticregulationand ionregulation: General account and mechanisms.

Unit - III

General survey of pigments and colour in marine animals; Colour changes-Chromatophores; Bioluminescence: luminescentglands and organs; biochemistr yofproduction of light, biological significance.

Unit - IV

Endogenousrhythms:Biologicalclocks;LunarperiodicityPhysiologyofsenseorgans:t ypesoforgansandfunctions.Physiologyof nervoussystem:structureandfunctions.

Unit - V

Generalaccountofreproductioninmarineanimals:Asexual,hermaphroditism,protan dryandprotogynyand sexreversal.

Reproductivecycles:maturationandspawning,semalparity,

iteroparity.Periodicityofmaturation. Factorsinfluencingreproduction.

References:

Nicol JAC	The Biology of marine animals	Pitman
Prosser CL	Comparative animal physiology	Saunders
Barnes RD	Invertebrate zoology	Saunders
Newell RC	Biology of intertidal animals	Logos press
Newell RC (Ed) Adaptation to environment	Butterworth
Palmer JD	Biological clocks in mar. organisms	Wiley Eastern

- 1. Dissection and display of digestive systems of Herbivorous, and Carnivorous Omnivorous shellfish and fin fish.
- 2. Dissection and display of reproductive system of fish, shrimp, sepia/loligo, cellana, squilla Dissection
- 3. Mounting of radula of cellana, nerita
- 4. Mounting of gills of carnivore and herbivore fishes
- 5. Determination of gonadal stages and Gonadosomatic Index of fish and shell fish
- 6. Mouth parts and appendages of shrimp and crab.

Paper 2.3: Fish Physiology

Learning Objectives:

To study the basic physiology of various systems of fish and shellfish and their functions.

Outcome:

Student acquire knowledge ondigestive system of fish and their function. Basic mechanism of feed intake and digestion process. Metabolism of different biomolecules. Basic concepts of respiration. Dynamics of cardiovascular system and their respiratory physiology. Basic concepts of reproductive physiology and endocrinology, Moulting and growth.

UNIT -I

Physiology of digestion: Digestion of carbohydrates. Lipids & proteins, digestive enzymes and regulation of their secretions, absorption & assimilation of nutrients, role of hormones in the regulation of digestion.

UNIT -II

Physiology of respiration: definition of respiration, Basal Metabolic Rate (BMR), external respiration, internal respiration, types of respiratory organs, respiratory pigments & their function, respiratory metabolism, energy budget and expenditure in relation to environment conditions & stress. Chloride cells & their role in respiration.

UNIT -III

Cardiovascular system: structure and functions of heart, blood circulation, blood pressure, Composition of blood, heart and cardiac output, structure of blood/haemolymph pigments.

UNIT -IV

Reproductive physiology: development of gonads, oogenesis, spermatogenesis, metabolic changes during oogenesis & spermatogenesis.

UNIT -V

Neuro-hormones, endocrine glands of finfish and shellfish, their role in regulation of reproduction, moulting and growth.

References:

Bardach JE et al	Aquaculture	Wiley Interscience
Conn & Stump	Outlines of Biochem	histry Wiley Eastern
Halver JE	Fish nutrition	Academic press
Hoar & Randall	Fish physiology (Vol.1-12)	Academic Press

- 1. Dissect and display of respiratory, circulatory, reproductive and endocrine systems in shellfish and finfish.
- 2. Estimation of amylase, protease, lipase, P^H in different parts of GI tract.
- 3. Extraction & purification of tissue protein and lipids,
- 4. Estimation of blood glucose, albumin and globulin, Oxygen consumption by fish/shrimp in relation to pH, temperature and salinity,
- 5. Histological observations of gonads- shellfish and finfish.
- 6. Estimation of total protein, lipid profile, creatinine, urea and enzymes in blood.

Paper 2.4: Fishery Science

Leaning Objectives:

To classify the fishes and to identify economically important fishes. To learn the various growth patterns, migratory behaviour's, population dynamics and recruitment of fishes.

To study the life cycle of fishes.

To study the migratory behaviour of fishes, importance of marking of tagging.

Outcome:

Knowledge on identification and classification of fishes and shell fishes up to species level. Gaining knowledge on life cycles and breeding biology of various groups of fishes. Acquired knowledge on Fish migrations and Population dynamics and their importance in fishery management,

Unit – I

General account of systematic classification of fishes. Classification based on degrees of movement, zones inhabited and manner of reproduction. Economically important groups of fishes: General and brief account of elasmobronchs, clupeoids, salmonoids, scombroids, gadoids, heterostomata, sciaenids, carangids, trichiurids, catfish, crustaceans and mollusks.

Unit – II

Naturalpopulationsorstocksasbiologicalentities:factorslimitingabundanceof stocks. Criteria for distinguishing units or multi-stock species. Idea of unit stock- its relevance to tropical marinefish. Stock enhancement, strategies like introduction of exotic species, pre and post stocking management, potential risk of stocking.

Unit – III

Populationdynamics:recruitment,growthandmortality. Length-weight relationship, Conditionfactor. Biomass.

Unit –IV

GeneralaccountoflifehistoryofIndianfishes:oilsardines,Indianshad, mackerel, Bombay duck and Malabarsole.

Generalaccountoffoodandfeedinghabitsoffishes and methods of assessment.

Unit – V

Age determination of fishes. Beverton and Holt yield per recruit model, Biomass- per –recruit.Generalaccountofmovementandmigrationinfishes:eels,salmon,Indian shad.Marking and Tagging of fishes.

References:

Cushing DH	Fisheries biology Wisconsin	U. Press
Cushing DH	Marine ecology & Fisheries	Cambridge U. Press
Jhingran VG	Fish and fisheries of India	Hindusthan
Nelson JS	Fishes of the world	John Wiley
Royce WF	Introduction to fishery scien	ces Academic Press
Peter B.	An Introduction to Ichthyology,	Prentice Hall.
Moyle, Joseph	J.	
Cech 1990 Fish	es	
Carl E. Bond	Biology of Fishes.	W.B.Saunders
Bensam, P.,	Development of Marine	Daya Publishing
	Fisheries Science in India.	House

- 1. Systematic identification of finfish and shellfish upto species level based on morphometric and meristic data
- 2. Gut content analysis and method of assessment of feeding
- 3. Estimation of fecundity
- 4. Length-weight relationship
- 5. Size at first maturity
- 6. Age and growth estimation
- 7. Relative condition factor
- 8. Problems related to stock assessment

M.Sc. Marine Biology and Fisheries, Third Semester

Paper3.1: Fishing Technology and Fishery Management

Learning Objective:

To study the details about fishing craft and gear and their regulations. To study the management of fishery resources.

Outcome:

The students acquired knowledge about evolution of fishing craft and gear. Gain knowledge on Materials required for fabrication of craft and gear.

To learn about pelagic, demersal and deep sea fishing.

To obtain knowledge on stock assessment and yield models. To know about the fishing regulations and control measures.

Unit – I

Evolution of Fishing craft: boat types and their classification. Boats used in India.

Evolution of Fishing gear: Classification of fishing gear; Descriptions of hand-line, troll line and pole line. Description, design and fabrication of trawl nets, purse-seine and gill nets.

Unit – II

Pelagic, demersal and deep sea fishing, By catch reduction in trawl fishing, Turtle Excluder Devices.

Stock assessment: Collection of basic data; stock size, yield models (Methods).

Unit – III

Fishing regulations: Potential fishing zones, code of conduct for responsible fishing, duration of fishing output control measures,

Unit – IV

Total available catch, catch quotas, licensing, technical control measures such as size limitations, closed fishing areas, closed seasons, size of nets and mesh size regulations, limited entry.

Unit – V

The effects of exploitation: The over-fishing problem, Management techniques. Modern navigation equipment life saving devices (Buoy, jacket, raft, SART, EPIRB,SCUBA). **References:**

Aitikin A	Fish handling & processing
Baranov F I	Selected works on fishing gear
Brandt AV	Fish catching methods of the world
Cushing DH	Marine ecology & fisheries
Sanisburry JC	Commercial fishing methods

- 1. Fishing Crafts: Catamaran, Masula boat, Dugout Canoes, Rampani and Trawler
- 2. Fishing Gears: Gill net, Purse Seine, Cast net, Ottor Trawl net, Beam trawl net, Hook & Line, Traps, Stake net and Dip net.
- 3Mess size in different fishing gears
- 4. Fishing gear knots: Square knot, Clove Hitch knot, Fisherman's knot
- 5. Fishing Gear Material: Nylon, Terylene, Polyethylene, Polypropylene
- 6. Other Fishing devices: Floats, Sinkers, buoy, raft
- 7. Length-frequency analysis of marine fishery resources
- 8. Gear selectivity
- 9. MSY-Stock recruitment relationship.

Paper 3.2: Aquaculture

Learning Objectives:

To study the importance and present status of aquaculture in Inia and abroad

To study the various aspects of site selection and construction of fish/ shrimp ponds and hatcheries

To study the various culture systems and practices for culture of various finfish/ shellfish and sea weeds.

Outcome:

The student can acquire sound knowledge on culture of various types fishes, shrimps, molluscans and sea weeds, those have high demand in the domestic as well as foreign market.

Unit-I

Definition and importance of aquaculture. Overview and status of aquaculture in India.Global aquaculture scenario, production, consumption and emerging trends.

Unit-II

Technical and non-technical considerations in site selection: Ecological factors- Type of land and its elevation to that of water source, soil characteristics and suitability, water supply and water quality, climatic conditions; Biological factors; Socio-economic factors; Legal regulations.

Design & construction of ponds, cages, pens, racks, rafts and long lines.

Unit-III

Selection of material and equipment for aquaculture.

Criteria for selection of species for aquaculture: Economical, ecological and Biological characters.

Monoculture, Polyculture, Integrated aquaculture, Integrated multi-trophic aquaculture, Sewage fed farming, Recirculating Aquaculture Systems, Organic farming, Biofloc system.

Unit-IV

Seed production through finfish and shellfish hatcheries.

Culture practices of finfish (carps, milk fish, Pompano and cobia), crustaceans (shrimps and prawns), mollusks (mussels, edible oysters and cephalopods).

Unit-V

Life cycles of seaweeds: *Ulva fasciata, Gracilaria corticata* and *Sargassum tenerrimum.* Culture practices of seaweeds in India and Abroad. Farming of Agar, Algin and Carrageenan yielding seaweeds. Breed improvement in Sea weeds.

References:

Bardach JE et al	Aquaculture	Wiley Interscience
Pillay & Dill	Advances in aquaculture	FAO
Stickney RR	Principles of Warmwater aquaculture	Wiley Interscience
Pillay TVR	Aquaculture: principles & practices	FNB
Alilis AE	Fish and shellfish pathology	Academic Press
Milne PH	Fish & shellfish farming in coastal waters	FNB
Stickney RR	Principles of aquaculture	Wiley & sons
Imai T	Aquaculture in shallow seas	Amerind

Practicals:

- 1. Design and construction of shrimp hatchery
- 2. Design and construction of fish farm
- Aquaculture equipment: Nets (Cast net, Scissor net), Sand filters, FRP-tanks, Harvesting buckets, Secchi disc, P^H meter, Refrectometer, Spectrophotometer)
- 4. General calculations in Aquaculture management: Survival Rate, Specific growth rate, Quantifying the seed for transport, Calculation of amount of soil required for construction of dike.
- 5. Identification of Cultivable finfish, Shellfish and Sea weeds.
- 6. Identification of Predators, weed fishes, aquatic weeds and larval forms.

7. Fertilizers used in aquaculture.

Paper 3.3: Fish Nutrition and Feed Technology

Learning Objectives:

To study the nutritional requirements of fish and shellfish. Nutritional bioenergetics of fish. Feed requirements and feed preparations. Feed formulation and feeding practices Methods of feeding.

Outcomes:

Student get knowledge on the composition of various feeds of finfish and shell fish. Student can acquire knowledge on the different types of feeds, their formulation and mode of application to the cultured species.

Unit - I

Fish nutrition: principles of fish nutrition and terminologies, nutritional requirements of cultivable finfish and shellfish: larvae, juveniles and adults

Nutritional biochemistry: classification, structure, quality evaluation of proteins, lipids, carbohydrates, vitamins and minerals.

Unit – II

Nutritional bioenergetics: fish as an open thermodynamic system, energy requirement of fishes, digestible energy, nitrogen balance index, protein sparing effect, optimal foraging theory, mathematical modeling of ingestion, metabolic rate, energy budgets, reproductive energetics in fish and shellfish.

Unit – III

Nutritional pathology: Anti nutritional factors and anti metabolites, microbial toxins, methods of elimination, nutrient deficiency and symptoms.

Unit – IV

Feed Resources: Nutritional value of feed ingredients, feed additives (attractants, growth stimulants, probiotics and binders), high energy feeds, isocaloric diets.

Feed Manufacture: Feed formulation and processing, On-farm feed manufacture, Commercial feed manufacture, Feed storage

Unit –V

Feeding Practices: Supplementary feed-theory and practice, complete diet - theory and practice, Feeding methods and scheduling, ration size, feed performance.

References:

S. AthithanPractical book on fish nutrition and feed technologyCyrino EP & bureau D & Kapoor BGFeeding & Digestive Functions in fishesScience Publ.

De Silva SS & Anderson TAFish Nutrition in aquaculture.Champman & HallElena M.Nutrition, Physiology and Metabolism in Crustaceans.Science PublishersHalver J & Hardy RW.Fish Nutrition.Academic Press

Lovell RT. Nutrition and Feeding of Fishes Chapman & Hall
CIFE. 1993. Training Manual on Culture of Live Food Organisms for AquaHatcheries.
Hagiwara A, Snell TW, Lubzens E & Tamaru CS. 1997. Live Food inAquaculture.
Proceedings of the Live Food and Marine LarvicultureSymposium. Kluwer.
Halver JE & Hardy RW. 2002. Fish Nutrition. Academic Press.

- 1. Quantitative analysis of protein, carbohydrate and lipid from fish feeds.
- 2. Different types of feeds
- 3. Feed formulations
- 4. Calculation of FCR and FCE
- 5. Calculation of daily ration of feed

Paper 3.4: Marine Pollution and Bio-deterioration

Learning Objectives:

To impart thorough knowledge to the students in marine pollution, sources of pollutants to coastal oceans, transport paths and agents, domestic, industrial and agricultural discharges, composition, fate in the marine environment. Waste water treatment methods. To study the fouling and boring activities of marine organisms on marine structures, controlling of boring and fouling activities of marine organisms. To study the strategies of global environmental methods.

Outcome:

The students will get knowledge about the various types of pollutants, their sources, transport paths, transport agents, their fate in the environment; controlling, monitoring and management methods of all those pollutants. The students will get commendable knowledge on the recent topics such as application of biotechnology to mitigate the pollutants generated by industrial activities, to treat the pollutants; EIA methods and enzymatic removal of hazardous substances. The knowledge acquired by the students on marine pollution may encourage them to develop, conduct and participate in the programmes against release of pollutants into the coastal environment.

Unit - I

Sourcesofmarinepollution:dynamics,transportpathsandagents.

Composition of domestic, industrial and agricultural discharges; their fate in the marine environ ment. Toxicity and treatment methods.

Unit - II

Oilpollution:Sources,compositionanditsfateinmarinehabitats.Toxicityandtreatmentmeth ods.

Thermalandradioactivepollution:sources, disposal systems of heated effluents, effects and treatment.

Soliddumping, mining and dredging operations: their effects on marine ecosystem, management of solid waste.

Unit - III

Bio-fouling and bio-deterioration: Biofilm formation-primary, secondary, tertiary colonizers.Effectsof bio-foulingandcontrolmeasures: manual,mechanical, chemical and biotechnological.

Borers:Effectsandcontrolmeasures.

Corrosion-

definition, reactions, classification. Factors and preventive measures.

Unit - IV

Globalenvironmental monitoringmethods: status, objectivesand limitations.

Monitoring strategies of marine pollution:critical pathway approach and mass balancing.EnvironmentImpactAssessment:

Assessmentofdamageandproblemsofmeasuringtheimpact

Unit - V

Roleofbiotechnologyinmarine pollution control.. Enzymatic removal of hazardous organic substances. Wastesfromfishprocessingunitsandtheirtreatment-removalofnitrogenandphosphorus.

Aquatic macrophytes in treatment of waste water.

References:

NielsenSE	Tropical pollution			
Kinne O	Marine Ecology Vol. V	John Wiley		
Johnson R (Ed)	Marine pollution	Academic Press		
Patin SA	Pollution and boil.Resources of oce	ans Butterworths		
Goldberg, E. D. 1974. The Health of the oceans, UNESCO Press. Paris.				
Park, P .K, Kester D.R.,	J.W. Deudall and B.H Ketchum, 198	3. Wastes in the Ocean.		
Vols. 1 to 3. Wiley Interscience	Publishers, New York.			
Eckenfelder WW. 2000. Industrial Water Pollution Control. McGraw Hill.				
Gray NF. 2004. Biolog	y of Wastewater Treatment.	Oxford University Press.		
Trivedy RK. 1998. Ad	vances in Wastewater Treatment Tec	hnologies. Global Science.		

- 1. Determination of BOD in the polluted sea water sample.
- 2. Determination of nutrients in the polluted sea water sample: nitrites, nitrates, silicates, phosphates
- 3. Determination of toxic elements in the polluted sea water sample: ammonia, sulphide
- 4. Estimation of particulate organic matter in the polluted sea water sample
- 5. Spotters: Foulers- primary, secondary and tertiary colonizers; Borers

M.Sc. Marine Biology and Fisheries, Fourth Semester

Paper 4.1: Fish Processing Technology

Learning Objectives:

To study the various bacteria found in fresh and processed foods and their impacts, Various methods of preservation of food products, Different methods for storage and transportation of fish, By products of fishery resources, and Quality control measures in sea food processing plants.

Outcomes:

To have a knowledge on the various bacteria and their isolation techniques. To gain knowledge on different techniques employed in sea food processing plants. To acquire knowledge on various methods of preparation of fishery byproducts.

Unit – 1

Microbiologyoffreshandprocessedfish:Commonbacterial pathogensinfish and fishery products-isolation and identification. Bacteria sanitary significance.

Unit – II

Handling of fish, Spoilage of fish and shellfish: effect of temperature on fish spoilage; Containers for packaging and transportation of fish

Useofchemicalpreservatives and irradiation in extending shelf-life of finfish and shell fish: effects of irradiation on protein, fat & vitamin.

Unit – III

Canning: principles of canning; can shapes, canning materials; handling and preparation of fish and shellfish for canning; spoilage of canned fish; chemical and microbiological spoilage and their prevention, process value calculation.

Curing: principles and practices of salting and drying the fish; microwave vacuum drying, pickling; smoking of fish; Spoilage of cured fish.

Unit – IV

Freezingoffish:techniquesoffreezing;typesoffreezers;changesduring freezing: Crystallization, nucleation, crystal growth, high pressure processing.

Protectionoffrozenfish:glazingandwrapping;useofanti-oxidants; Thawing of frozen fish; double freezing offish

Unit – V

Fishery By-products: processing of low cost fish; minced meat, fish oil, fish meal, Fishsausages, isinglass, glues, fishsilage, chitosan, chitinpearlessence; Alginates, agar.

Quality problem in fishery products: good manufacturing practices, HACCP

National and International standards, Food laws in India.

References: Aitikin A Fish handling & processing Borgstorm G Academic press Fish as food **Connell JJ** Advances in fish science & technology FNB Neha Charan Assessment of fish quality Anon. 2001. Food Borne Disease Handbook. 2nd Ed. Vol. IV. Seafood and Environmental Toxins. Marcel Dekker. Balachandran KK. 2001. Post Harvest Technology of Fish and Fish Products. Daya Publ. Sen DP. 2005. Advances in Fish Processing Technology. Allied Publ. Wheaton FW & Lawson TB. 1985. Processing Aquatic Food Products. John Wiley & Sons. Windsor M & Barlow. 1981. Introduction to Fishery Byproducts. Fishing News (Books).

- 1. Estimation of moisture content in fish and shrimp muscle.
- 2. Estimation of Total Plate Count (TPC) in water and fish muscle sample.
- 3. Identification of Gram -ve and Gram +ve bacteria using Gram staining technique.
- 4. Assessment of freshness of fish and shrimp by using organoleptic characters.
- 5. Isolation of Bacillus and Clostridium species from sea food
- 6. Freezing curve and determination of freezing point
- 7. Equipments and By-products
- 8. Visit to processing plant tolearn the sanitary conditions to be maintained in fish preservation.

Paper4.2: Fishery Economics and Extension

Learning objectives:

To study the concept of Economics and its impact on fishery industry.

To understand several factors affecting the activities of fisheries and study the relationship between input and output.

To understand cost and profit relationship, promotion of fishery activities and role of several institutions for economic development.

To understand guidelines for promotion of fishery trade and extension in fisheries.

Outcome:

Students will understand the economic aspects of fisheries, make it more profitable and study the socio economic aspects which help in promotion both domestically and internationally. Understand the market concepts of demand, supply, costs and profit.

Unit-I

Contribution of fisheries to National Economy, Introduction to fisheries economics, Role of economic, technological, social, cultural, political and environmental factors effecting fisheries, Theories of factors of production – Factor-factor, Factor-product, Product-product relationship,

Unit-II

Factors effecting Demand and Supply, Indian marketing environment; Fishery & aquaculture marketing system; Strategies and methods for promoting fisheries development, Cost function and components in fishing effort, Income concepts- factors, BEA, CVP in fisheries, Bio-economic model of the fishery, LPP

Unit-III

Management of fisheries: Regulation of commercial fisheries, Fisheries credit and finance-NABARD, Fisheries cooperatives and Rural development, Risk and un-certainities in fisheries, Fishery resources of India, overfishing and under fishing, open access fisheries,

Unit-IV

Economics of different aquaculture systems. Factors affecting economics of aquaculture, Socioeconomic issues in aquaculture development, Domestic and export marketing of fish and fish products, International trade of seafood and trade regulations-WTO, Seafood Export promotion in India-MPEDA.

Unit-V

Extension in Fisheries- Fisheries training and education in India : Training Institutes, Universities, Research Organisations, modes of extension, Interdependence between fisheries and industrial development, Natural Disasters and its coping mechanism **References:**

Medwin Gale Economics in Fisheries researchGrafton QR, Kirkley J, Kpmpas T & Squire DEconomics for fisheries ManagementCunningham S, Dunn MR & Whitmarsh D, 1985. Fisheries Economics. St. Martin's PressDunne EB, 1990.Fisheries Exonomics- An Introduction.Shang YC, 1981.Aquaculture Economics. Westview Press.Shyam S. Salim, RS Birada and SK. Pandey, 2005. Fisheries economics and marketing- An
Introduction. CIFE

Practicals:

1. Estimation of different production relationships

- 2. Farm business analysis- Breakeven, Cost-benefit analysis
- 3. Mathematical analysis of production relationship
- 4. Estimation of Physical and economic optimum
- 5. Estimation of yield gap and factor shares
- 6. Linear programming- variable resource programming,

Variable price programming and optimization techniques.

Paper4.3: Aquaculture Biotechnology

Learning Objectives:

To impart knowledge on application of biotechnology in finfish and shellfish breeding. To study the application of genetics in aquaculture, culture of live feedsand aquaculture health management.

Outcome:

Student acquire knowledge on breeding technology of finfish and shellfish, cryopreservation of gametes, In-Vitro fertilization.

Student gain knowledge on fish genetics for production of high quality species, culture of live feeds and disease diagnosis and control.

Unit-I

ReproductiveBiotechnology: Induced breeding, Egg incubation and Larval rearing. Synthetic hormones for induced breeding - molecular endocrinology with emphasis on use of analogues for breeding like GnRH, pheromones. Cryopreservation, IN VITRO fertilization, artificial insemination.

Unit-II

Principlesofgenetics:fishcytogenetics;Applicationofgeneticsinaquaculture: genetic selection, hybridization, inbreeding, cross-breeding, sex control, polyploidy andtransgenesis, methods of gene transfer in fishes, screening, sites, applications. Development of disease- resistant and high quality strains.

Unit-III

Live feed: culture of commercially important micro algal species (*Chaetoceros, Skeletonema, Isochrysis, Tetraselmis, Thallassiosira, Nannochloropsis*), single cell protein from *Spirulina,* Culture of Artemia, rotifers, cladocerons, chirinomid larvae.

Unit-IV

Health Management: Viral, bacterial, fungal, parasitic, nutritional and environmental diseases of cultured fish and shellfish.DNA and RNA vaccines, molecular diagnosis of viral diseases, Dotblot, RAPD, RFLP.

Unit-V

Biotechnological approaches for peptide synthesis. Antimicrobial peptides and their applications. therapeutic proteins. Immunostimulants. anti-oxidants, antibiotics and nutraceuticals. Application of nanotechnology in aquaculture. **References:**

Halver JEFish NutritionWiley InterscienceHoar & RandallFish physiologyAcademic PressBardach JE et alAquacultureWiley InterscienceConn & StumpOutlines of biochemistryWiley EasternItaly, E (Eds). 1998, New Developments in Marine Biotechnology, Plenum Pub. Corp.

Milton Fingerman and Rachakonda Nagabhushanam, 1996, Molecular Genetics of Marine Organisms, Science Pub Inc.

Y. Le Gal and H.O.Halvorson 1998, New Developments in Marine Biotechnology. Springer.

- 1. Pituitary gland isolation and preparation of pituitary gland extract
- 2. Induced spawning fish, shrimp, Seaurchins and bivalves
- 4. Live feed cultures (microalgae)
- 5. Determination of concentration of microalgal cells in culture flasks using haemocytometer
- 6. Spotters of live feed organisms:
 - i. Animal live feed
 - ii. Plant live
- 7. Numericals on inbreeding, cross breeding and polyploidy
- 7. PCR Demo
- 8. Dot- Blot Dem.